В современном инструментальном производстве применение сверхтвердых абразивных материалов (СТМ) - синтетического алмаза и кубического нитрида бора (КНБ) - рассматривается как приоритетное направление увеличения производительности и повышения надежности режущих инструментов. С наибольшей эффективностью инструменты из СТМ применяются в технологических процессах алмазно-абразивной обработки, для которых важна их гарантированная стойкость, высокие режущие свойства и производительность. Однако, необходимая в современных условиях эффективность обработки вольфрамовых сплавов, инструментальных сталей и керамики, обеспечивается при производительности шлифования 1000-3000 мм/мин; в то время как станочные системы и промышленные технологии механообработки могут обеспечить производительность 3000-5000 мм3/мин, а в недалеком будущем — 10 000 мм3/мин. Для интенсификации процессов шлифования необходимо создание нового поколения шлифовальных кругов из СТМ и прогрессивных технологических систем.
При обработке твердосплавных и стальных инструментов, используемых в металло и деревообработке, ряде других направлений механообработки, применяются различные технологические процессы шлифования. В результате обширных исследований предложены критерии технологического управления параметрами качества обработанных поверхностей и выбора оптимальных условий работы инструментов из СТМ. Установлено, что одним из наиболее эффективных процессов обработки является алмазное шлифование с применением СОТС или периодическим вводом в зону резания электрического тока низкого напряжения.
Прогнозная оценка современного уровня применения шлифовальных кругов из СТМ позволяет обосновать направления интенсификации процессов шлифования инструментальных материалов. При этом особое значение имеет применение методов вибрационного и волнового воздействия, совмещение механического воздействия с химическими, электрическими и другими процессами обработки, т.е. интенсивное использование совмещенных процессов физико-механической обработки.
1.1. Концепция интенсификации процессов шлифования кругами из СТМ
Интенсификация процессов шлифования - извечная проблема механообработки и, в особенности, алмазно-абразивной обработки, которая лежит в основе создания высоких технологий обработки режущих инструментов и деталей машин.
Проведенный нами анализ патентно-информационных материалов [1, 2, 3] показывает, что сверхтвердые абразивные материалы используются для чистовых и доводочных (финишных) операций обработки деталей машин и инструментов, где требуется обеспечить гарантированное качество, стойкость и надежность, стабильные режущие свойства инструментов из СТМ. Достигнутый уровень производительности не превышает 1000-2000 мм3/мин. В табл. 1.1 и 1.2 приведены данные, характеризующие современный уровень шлифовальных кругов из СТМ и их соответствие прогнозным значениям.
Патентно-информационные материалы зарубежных стран свидетельствуют об актуальности применения СТМ в инструментальном и основном производствах. В них приводятся характеристики применяемых инструментов из СТМ и описание технологического оборудования. Как правило, зарубежные фирмы, занимающиеся созданием технологического оборудования, стремятся непосредственно в технологическом оборудовании комплексно реализовать новейшие достижения в области высоких технологий шлифования, применять современные инструменты из СТМ, использовать эффективные СОТС, рационально использовать автоматизацию, роботизацию и программное управление технологическими процессами обработки. Такая тенденция промышленной реализации технологий шлифования инструментов и деталей посредством создания специализированного автоматизированного оборудования наглядно демонстрируется на международных специализированных выставках, посвященных инструментам из суперабразивов
В Украине разработаны технологические процессы шлифования и заточки кругами из СТМ твердосплавного и стального инструмента, используемого в машиностроении, металло- и деревообработке, других отраслях промышленности [4, 5]. Определена возможность технологического управления параметрами качества обработанных поверхностей и выбора оптимальных условий работы инструментов из СТМ. При этом можно констатировать, что одним из наиболее эффективных процессов обработки труднообрабатываемых материалов является алмазное шлифование с применением СОТС или периодическим вводом в зону резания электрического тока низкого напряжения для правки и активации режущей поверхности кругов из СТМ.
Проведенные информационные исследования современных абразивных инструментов из сверхтвердых материалов и технологий их шлифования, анализ тенденций современного развития высоких технологий в машиностроении как вектора развития технологического маркетинга, менеджмента качества и сертификации, а также прогноз научно-технического потенциала машиностроения Украины показывают, что проблема обработки таких труднообрабатываемых материалов, как вольфрамовые, безвольфрамовые и маловольфрамовые сплавы и стали, а также инструментальные стали, конструкционные металлы и сплавы при глубинах шлифования 0,5-1,0 мм и более практически не решена.
Решение проблемы интенсификации процесса шлифования мы связываем с активизацией основного фактора - динамического абразивного воздействия СТМ на обрабатываемый материал. Явления прецессии шлифовального шпинделя технологической системы и возникающие при этом эффекты вибрации и либрации в зоне обработки позволяют обеспечить производительность абразивного резания, равную 5000-10 000 5000-10 000 мм3/мин. Такая концепция разработки научных методов интенсификации процессов шлифования инструментальных материалов кругами из синтетического алмаза и кубонита на основе экспериментально-теоретического исследования обусловливает решение следующих задач:
— разработку и выбор экспериментальных методов и информационно-измерительных систем для исследования технологий шлифования с высокой производительностью обработки;
— создание технологических основ интенсификации процессов шлифования кругами с функционально-ориентированным рабочим слоем из СТМ; установление зависимостей работоспособности шлифовальных кругов от структуры функционально-ориентированного рабочего слоя из СТМ; определение основных характеристик процесса глубинного алмазного шлифования твердых сплавов; оценку влияния смазочно-охлаждающих технологических сред и оптимизация их выбора; технологическое обеспечение качества алмазного шлифования твердых сплавов;
— теоретическую разработку и исследование процесса (метода) вибрационно-прецессионного шлифования кругами из СТМ с учетом особенностей пространственного перемещения оси вращения шпинделя в технологической системе; анализ особенностей динамики и кинематики данного процесса; применение адаптивной системы управления; выбор расчетной модели и аналитическое определение технологических параметров вибрационно-прецессионного шлифования твердосплавного инструмента;
— обоснование характеристики рабочего слоя шлифовальных кругов из СТМ для интенсифицированных процессов шлифования инструментальных материалов; разработку кругов из алмаза и кубонитсодержащих металлополимерных и металлокерамических композитов, оценку их конкурентоспособности и технического уровня, создание компьютерной базы данных шлифовальных кругов из СТМ;
— разработку моделей технологий высокопроизводительного алмазного шлифования режущих инструментов: автоматизированной заточки твердосплавных резцов общего назначения и ножовочных полотен из инструментальных сталей; заточки дисковых дереворежущих пил с пластинками из твердого сплава; шлифования фасонного твердосплавного инструмента, применяемого при производстве подшипников; прецизионной обработки режущих инструментов (сверл, фрез, протяжек, штампов и др.), а также деталей из конструкционной керамики;
— разработку компьютерно-информационной оценки уровня технологий шлифования; разработку и реализацию специализированного оборудования и технологических устройств для высокопроизводительных процессов шлифования кругами из СТМ.
«Алмазно-абразивный инструмент в технологиях механообработки». / Под ред. А.О. Шепелева.- Киев: ИСМ им. В.М. Бакуля. НВЦ «Алкон» НАНУ, 2007.-340с.
(15 - 19 с.)
Применение сверхтвердых материалов в различных отраслях промышленности: металлообработка (шлифование, хонингование, правка инструмента), обработка стекла, камнеобработка, резка бетона, полирование драгоценных камней.
понедельник, 15 марта 2010 г.
воскресенье, 14 марта 2010 г.
вторник, 23 февраля 2010 г.
Пасты из порошков карбида титана.
Абразивные пасты КТ выпускаются в диапазоне зернистостей: шлифпорошков 630/500-50/40; микропорошков 60/40-1/0.
Это сложные многокомпонентные структурированные системы, состоящие из классифицированных по зернистостям порошков карбида титана и основы из органических масел, поверхностно-активных веществ, структурообразователей, смазочных материалов.
Абразивные пасты КТ оказывают на обрабатываемую поверхность химическое и механическое воздействие. Они образуют тонкодисперсные эмульсии, способствующие равномерному распределению абразива в рабочей зоне. В состав пасты входят поверхностно-активные вещества, которые облегчают промывку деталей, выводят из зоны обработки легковоспламеняющиеся жидкости, образующиеся в процессе обработки шлаки и стружку. Это обеспечивает высокую работоспособность паст, стабильность их свойств.
Пасты применяются при шлифовании, доводке, полировании деталей авиационной техники, прецизионных подшипников, запорно-тормозной аппаратуры и узлов пневмоприводов (кранов, вентилей, гидроциклонов), инструментальной оснастки, а также для обдирки крупногабаритных деталей и узлов.
В зависимости от массовой доли порошка епрбида титана концентрация выпускаемых паст может быть нормальной (Н) и повышенной (П). Содержание порошка КТ в зависимости от зернистости составляет:
630/500 – 50/40 - Н (50%); П (60%)
60/40 – 14/10 - Н (30%); П (40%)
10/7 – 1/0 - Н (20%); П930%).
По консистенции абразивные пасты КТ выпускаются мазеобразные (М), расфасованные ы тубы по 40 грамм, в банках по 500 и 1000 грамм.
В зависимости от состава основы пасты выпускаются:
1. Смываемые органическими (О) растворителями керосином, бензином, спиртом и т.д.
2. Смываемые водой (В) – разбавляются и смываются водой.
3. Универсальные, смываемые как водой, так и органическими растворителями (ВО), разбавляются и смываются дистиллированной водой, спиртом, индустриальными маслами, бензином, керосином.
Для эфеективного использования паст из порошков карбида титана необходимо применять притиры из чугуна СЧ 18-36, стали, меди, латуни, стекла ЛН5, дерева (березы, дуба, бука), винипласта, фетра, замши, текстолита и др.
Это сложные многокомпонентные структурированные системы, состоящие из классифицированных по зернистостям порошков карбида титана и основы из органических масел, поверхностно-активных веществ, структурообразователей, смазочных материалов.
Абразивные пасты КТ оказывают на обрабатываемую поверхность химическое и механическое воздействие. Они образуют тонкодисперсные эмульсии, способствующие равномерному распределению абразива в рабочей зоне. В состав пасты входят поверхностно-активные вещества, которые облегчают промывку деталей, выводят из зоны обработки легковоспламеняющиеся жидкости, образующиеся в процессе обработки шлаки и стружку. Это обеспечивает высокую работоспособность паст, стабильность их свойств.
Пасты применяются при шлифовании, доводке, полировании деталей авиационной техники, прецизионных подшипников, запорно-тормозной аппаратуры и узлов пневмоприводов (кранов, вентилей, гидроциклонов), инструментальной оснастки, а также для обдирки крупногабаритных деталей и узлов.
В зависимости от массовой доли порошка епрбида титана концентрация выпускаемых паст может быть нормальной (Н) и повышенной (П). Содержание порошка КТ в зависимости от зернистости составляет:
630/500 – 50/40 - Н (50%); П (60%)
60/40 – 14/10 - Н (30%); П (40%)
10/7 – 1/0 - Н (20%); П930%).
По консистенции абразивные пасты КТ выпускаются мазеобразные (М), расфасованные ы тубы по 40 грамм, в банках по 500 и 1000 грамм.
В зависимости от состава основы пасты выпускаются:
1. Смываемые органическими (О) растворителями керосином, бензином, спиртом и т.д.
2. Смываемые водой (В) – разбавляются и смываются водой.
3. Универсальные, смываемые как водой, так и органическими растворителями (ВО), разбавляются и смываются дистиллированной водой, спиртом, индустриальными маслами, бензином, керосином.
Для эфеективного использования паст из порошков карбида титана необходимо применять притиры из чугуна СЧ 18-36, стали, меди, латуни, стекла ЛН5, дерева (березы, дуба, бука), винипласта, фетра, замши, текстолита и др.
пятница, 12 февраля 2010 г.
Состав, типы и фасовка пасты из сверхтвердых материалов.
В зависимости от консистенции пасты, подразделяются на мазеобразные (М) и твердые (Т). Консистенция алмазных паст определяется пенетрацией (числом проницаемости) не пенетрометре. Консистенция паст при температуре 20-50ºС по показаниям пенетрометра должна соответствовать: мазеобразной (М) – от 100 до 400 делениям пенетрометра, твердой (Т) – от 20 до 80.
Мазеобразные пасты поставляются потребителям в тубах или емкостях по 40, 50, 100 грамм или в банках по 500 и 1000 грамм. Твердые пасты – в специальной упаковке, позволяющей выдавливать пасту.
В зависимости от состава основы пасты подразделяются на:
1. Смываемые органическими (О) растворителями керосином, бензином, спиртом и т.п., которые разбавляются индустриальными маслами, керосином или смесью;
2. Смываемые водой (В) – разбавляются и смываются водой;
3. Универсальные, смываемые как водой, так и органическими растворителями (ВО), разбавляются и смываются дистиллированной водой, спиртом, индустриальными маслами, бензином, керосином.
Пасты, смываемые органическими растворителями, рекомендуются для обработки металлов и сплавов.
Пасты и суспензии, смываемые водой, рекомендуются для обработки неметаллических материалов, а также металлов в тех случаях, когда недопустимо применение огнеопасных жидкостей при промывки обработанных изделий.
Пасты и суспензии, смываемые водой и органическими растворителями, рекомендуются для обработки металлов, сплавов и неметаллических материалов, например природного камня, полудрагоценных и драгоценных камней.
В зависимости от состава основы пасты они имеют различные области применения.
Тип пасты Г – обработка черных и цветных металлов, сталей, сплавов, неметаллических и полупроводниковых материалов.
Тип пасты Л – обработка легированных сталей, чугуна, керамики, металлокерамики, твердых сплавов, феррита, сапфира, драгоценных и полудрагоценных, поделочных камней.
Тип пасты Х – обработка стекла, полупроводниковых материалов, твердосплавного инструмента, армированных пластмасс, нержавеющих сталей.
Тип пасты Э – обработка стекла, полупроводниковых материалов, твердосплавного инструмента, армированных пластмасс, хрупких неметаллических материалов.
Пример условного обозначения пасты из микропорошка синтетических алмазов марки АСМ зернистостью 28/20, с повышенной массовой долей алмазов (П) в пасте, смываемые водой и органическими растворителями (ВО), мазеобразной консистенции (М), типа Л: Паста АМС 28/20 ПВОМЛ
Хранить алмазную пасту следует при температуре не выше 30ºС. При более высокой температуре, вязкость ее уменьшается, происходит расслоение пасты и алмазный порошок осаждается.
Большое значение для эффективного использования паст имеет выбор материала притира при полировании.
В качестве материала для притира применяют чугун, сталь, латунь, медь, древесину, кожу, войлок, фетр и др. материалы. Выбор притира зависит от материала обрабатываемой детали, его твердости и требуемого качества обработанной поверхности.
Чугун обеспечивает высокую производительность, необходимую геометрию поверхности, но дает более грубую обработку, чем притиры из более легкого материала. Чугун используется при обработке наиболее твердых материалов пастами крупных зернистостей. Для изготовления притиров следует применять мелкозернистый чугун с минимальной поверхностью.
Сталь используется вместо чугуна в тех случаях, когда при малом поперечном сечении притира прочность чугуна оказывается недостаточной. Сталь применяется только для съема больших припусков.
Латунь, медь лучше использовать при доводке изделий алмазной пастой средних зернистостей. Для увеличения жесткости притиров применяются стальные сердечники. Медные притиры при сильном нагреве склонны к засаливанию, в этом случае их надо увлажнять.
Древесина различных пород от твердых (граб, бук, дуб) до самых мягких (береза, липа) хорошо удерживает алмазные зерна, снижает расход пасты. Притиры делают из поперечных срезов древесины.
Стекло рекомендуется использовать при полировании полудрагоценных камней, корунда, граната и т.д.
Фибра применяется для притиров, которые должны хорошо сохранять свою форму при использовании паст средних и мелких зернистостей. Фибра обеспечивает очень низкую шероховатость поверхности.
Кожу, войлок, фетр следует применять только при использовании паст мелких зернистостей для окончательной обработки поверхностей и полировании до зеркального блеска. Эти материалы могут использоваться в виде вращающихся дисков, оправок или вставок при возвратно-поступательном движении.
Для осуществления процесса доводки необходимо, чтобы притир шаржировался, то есть, чтобы абразивные зерна вдавливались в его поверхность.
В одном карате алмазного порошка от десятков тысяч до сотен миллиардов зерен, поэтому на притир необходимо наносить оптимальное количество пасты, снижая тем самым ее расход и себестоимость обработки.
Для пасты каждой зернистости следует применять отдельный притир. При переходе от пасты крупной зернистости к мелкой обрабатываемую деталь требуется тщательно промывать.
При выборе притира необходимо соблюдать следующие условия:
-- притир должен быть мягче обрабатываемого материала;
-- твердые притиры применять при больших припусках и пастах крупных зернистостей;
-- мягкие притиры рекомендуются для получения минимальной шероховатости обработанной поверхности.
При плоской доводке вращающимися притирами необходимо на рабочей поверхности притира нарезать кольцевые канавки, которые позволяют лучше выводить отработанный шлам, увеличить удельное давление при постоянном усилии прижима. При ручной доводке на притире лучше делать поперечные канавки.
Мазеобразные пасты поставляются потребителям в тубах или емкостях по 40, 50, 100 грамм или в банках по 500 и 1000 грамм. Твердые пасты – в специальной упаковке, позволяющей выдавливать пасту.
В зависимости от состава основы пасты подразделяются на:
1. Смываемые органическими (О) растворителями керосином, бензином, спиртом и т.п., которые разбавляются индустриальными маслами, керосином или смесью;
2. Смываемые водой (В) – разбавляются и смываются водой;
3. Универсальные, смываемые как водой, так и органическими растворителями (ВО), разбавляются и смываются дистиллированной водой, спиртом, индустриальными маслами, бензином, керосином.
Пасты, смываемые органическими растворителями, рекомендуются для обработки металлов и сплавов.
Пасты и суспензии, смываемые водой, рекомендуются для обработки неметаллических материалов, а также металлов в тех случаях, когда недопустимо применение огнеопасных жидкостей при промывки обработанных изделий.
Пасты и суспензии, смываемые водой и органическими растворителями, рекомендуются для обработки металлов, сплавов и неметаллических материалов, например природного камня, полудрагоценных и драгоценных камней.
В зависимости от состава основы пасты они имеют различные области применения.
Тип пасты Г – обработка черных и цветных металлов, сталей, сплавов, неметаллических и полупроводниковых материалов.
Тип пасты Л – обработка легированных сталей, чугуна, керамики, металлокерамики, твердых сплавов, феррита, сапфира, драгоценных и полудрагоценных, поделочных камней.
Тип пасты Х – обработка стекла, полупроводниковых материалов, твердосплавного инструмента, армированных пластмасс, нержавеющих сталей.
Тип пасты Э – обработка стекла, полупроводниковых материалов, твердосплавного инструмента, армированных пластмасс, хрупких неметаллических материалов.
Пример условного обозначения пасты из микропорошка синтетических алмазов марки АСМ зернистостью 28/20, с повышенной массовой долей алмазов (П) в пасте, смываемые водой и органическими растворителями (ВО), мазеобразной консистенции (М), типа Л: Паста АМС 28/20 ПВОМЛ
Хранить алмазную пасту следует при температуре не выше 30ºС. При более высокой температуре, вязкость ее уменьшается, происходит расслоение пасты и алмазный порошок осаждается.
Большое значение для эффективного использования паст имеет выбор материала притира при полировании.
В качестве материала для притира применяют чугун, сталь, латунь, медь, древесину, кожу, войлок, фетр и др. материалы. Выбор притира зависит от материала обрабатываемой детали, его твердости и требуемого качества обработанной поверхности.
Чугун обеспечивает высокую производительность, необходимую геометрию поверхности, но дает более грубую обработку, чем притиры из более легкого материала. Чугун используется при обработке наиболее твердых материалов пастами крупных зернистостей. Для изготовления притиров следует применять мелкозернистый чугун с минимальной поверхностью.
Сталь используется вместо чугуна в тех случаях, когда при малом поперечном сечении притира прочность чугуна оказывается недостаточной. Сталь применяется только для съема больших припусков.
Латунь, медь лучше использовать при доводке изделий алмазной пастой средних зернистостей. Для увеличения жесткости притиров применяются стальные сердечники. Медные притиры при сильном нагреве склонны к засаливанию, в этом случае их надо увлажнять.
Древесина различных пород от твердых (граб, бук, дуб) до самых мягких (береза, липа) хорошо удерживает алмазные зерна, снижает расход пасты. Притиры делают из поперечных срезов древесины.
Стекло рекомендуется использовать при полировании полудрагоценных камней, корунда, граната и т.д.
Фибра применяется для притиров, которые должны хорошо сохранять свою форму при использовании паст средних и мелких зернистостей. Фибра обеспечивает очень низкую шероховатость поверхности.
Кожу, войлок, фетр следует применять только при использовании паст мелких зернистостей для окончательной обработки поверхностей и полировании до зеркального блеска. Эти материалы могут использоваться в виде вращающихся дисков, оправок или вставок при возвратно-поступательном движении.
Для осуществления процесса доводки необходимо, чтобы притир шаржировался, то есть, чтобы абразивные зерна вдавливались в его поверхность.
В одном карате алмазного порошка от десятков тысяч до сотен миллиардов зерен, поэтому на притир необходимо наносить оптимальное количество пасты, снижая тем самым ее расход и себестоимость обработки.
Для пасты каждой зернистости следует применять отдельный притир. При переходе от пасты крупной зернистости к мелкой обрабатываемую деталь требуется тщательно промывать.
При выборе притира необходимо соблюдать следующие условия:
-- притир должен быть мягче обрабатываемого материала;
-- твердые притиры применять при больших припусках и пастах крупных зернистостей;
-- мягкие притиры рекомендуются для получения минимальной шероховатости обработанной поверхности.
При плоской доводке вращающимися притирами необходимо на рабочей поверхности притира нарезать кольцевые канавки, которые позволяют лучше выводить отработанный шлам, увеличить удельное давление при постоянном усилии прижима. При ручной доводке на притире лучше делать поперечные канавки.
среда, 10 февраля 2010 г.
Пасты и суспензии из СТМ
Пасты и суспензии применяются при ручной и механической доводках, притирке и полировании поверхностей точных деталей из металлов, сплавов и хрупких неметаллических материалов.
Это сложные многокомпонентные структурированные системы, состоящие из синтетических алмазов, наполнителей и основы из органических масел, поверхностно-активных веществ (органические кислоты, спирты, эфиры), структурообразователей (воски, парафины, церезины, проксанол 268), смазочные материалы, присадки.
Алмазные пасты оказывают на обрабатываемую поверхность химическое и механическое воздействие. Они образуют тонкодисперсные эмульсии, способствующие равномерному распределению алмаза в рабочей зоне. В состав пасты входят поверхностно-активные вещества, которые облегчают промывку деталей, выводят из зоны обработки легковоспламеняющиеся жидкости, образовавшиеся в процессе обработки шлаки и стружку. Это повышает производительность за счет повышения абразивной способности, улучшает качество обрабатываемой поверхности.
Большое значение при подборе компонентов основ паст и суспензий имеют не только их поверхностная и химическая активность, но и структурно-механические свойства. Одним из параметров, характеризующих структуру паст, является их коллоидная стабильность, т.е. способность пасты сопротивляться расслаиванию.
В случаях, когда процесс обработки сопровождается выделением большого количества тепла, пасты и суспензии должны обладать определенной термостойкостью.
На основе поверхностно-активных веществ, структурообразователей, термостойких соединений, адгезионными, антистатическими и другими свойствами были разработаны разные типы паст, обеспечивающие высокую работоспособность, стабильность свойств.
Алмазные пасты и суспензии изготавливаются из синтетических алмазных порошков разных зернистостей. В зависимости от зернистости они применяются для различных видов обработки. В таблице показаны шероховатости получаемых обработанных поверхностей и области применения.
Чем мельче алмазный порошок, а следовательно, чем больше количество зерен, содержащихся в 1 карате, и больше удельная поверхность, тем меньше должно быть процентное содержание алмазного порошка в пасте. Порошок в пасте должен быть равномерно распределен по всему объему. От правильного выбора концентрации пасты зависит величина удельного расхода алмаза и эффективности ее применения. Понижение содержания порошка в пастах приводит к снижению производительности обработки. Высокое содержание порошка в пастах, превышающее оптимальное значение, приводит к нарушению структуры пасты, накоплению шлама и экранированию рабочих поверхностей абразивного порошка, что также значительно снижает удельную работоспособность пасты.
Были подобраны оптимальные варианты по содержанию алмазного порошка в пастах. Алмазные пасты выпускаются нормальной (Н), повышенной (П) и высокой (В) концентрации в зависимости от массовой доли порошка в пасте для каждой зернистости.
В таблице приведены данные о содержании алмазных порошков различных зернистостей в пастах:
60/40
40/28 8 20 40
28/20
20/14
14/10 15 30
10 / 7
7 / 5
5 / 3 10 20
Это сложные многокомпонентные структурированные системы, состоящие из синтетических алмазов, наполнителей и основы из органических масел, поверхностно-активных веществ (органические кислоты, спирты, эфиры), структурообразователей (воски, парафины, церезины, проксанол 268), смазочные материалы, присадки.
Алмазные пасты оказывают на обрабатываемую поверхность химическое и механическое воздействие. Они образуют тонкодисперсные эмульсии, способствующие равномерному распределению алмаза в рабочей зоне. В состав пасты входят поверхностно-активные вещества, которые облегчают промывку деталей, выводят из зоны обработки легковоспламеняющиеся жидкости, образовавшиеся в процессе обработки шлаки и стружку. Это повышает производительность за счет повышения абразивной способности, улучшает качество обрабатываемой поверхности.
Большое значение при подборе компонентов основ паст и суспензий имеют не только их поверхностная и химическая активность, но и структурно-механические свойства. Одним из параметров, характеризующих структуру паст, является их коллоидная стабильность, т.е. способность пасты сопротивляться расслаиванию.
В случаях, когда процесс обработки сопровождается выделением большого количества тепла, пасты и суспензии должны обладать определенной термостойкостью.
На основе поверхностно-активных веществ, структурообразователей, термостойких соединений, адгезионными, антистатическими и другими свойствами были разработаны разные типы паст, обеспечивающие высокую работоспособность, стабильность свойств.
Алмазные пасты и суспензии изготавливаются из синтетических алмазных порошков разных зернистостей. В зависимости от зернистости они применяются для различных видов обработки. В таблице показаны шероховатости получаемых обработанных поверхностей и области применения.
Зернистость алмазного порошка | Шероховатость поверхности РА, мкм | Область применения |
До обработки | После обработки | |
125/10 - 50/40 | 0,4 - 0,2 | Шлифование, грубая черновая доводка различных материалов |
60/40 - 40/28 | 0195 - 0155 | Грубая черновая доводка сталей, сплавов, неметаллических материалов |
28/20 - 14/10 | 0,16 - 0,1 | 0,12 - 0075 Предварительная доводка сталей, сплавов, неметаллических материалов |
10 / 7 - 5 / 3 | 0,08 - 0,05 | 0,06 - 0038 Точная доводка сталей, сплавов и неметаллических материалов |
3 / 2 - 1 / 0 | 0,04 - 0025 | 0,03 - 0,02 Полирование сталей, сплавов и неметаллических материалов |
1 / 0, 5 - 0,1 / 0 | Тонкое полирование сталей, сплавов и неметаллических материалов |
Чем мельче алмазный порошок, а следовательно, чем больше количество зерен, содержащихся в 1 карате, и больше удельная поверхность, тем меньше должно быть процентное содержание алмазного порошка в пасте. Порошок в пасте должен быть равномерно распределен по всему объему. От правильного выбора концентрации пасты зависит величина удельного расхода алмаза и эффективности ее применения. Понижение содержания порошка в пастах приводит к снижению производительности обработки. Высокое содержание порошка в пастах, превышающее оптимальное значение, приводит к нарушению структуры пасты, накоплению шлама и экранированию рабочих поверхностей абразивного порошка, что также значительно снижает удельную работоспособность пасты.
Были подобраны оптимальные варианты по содержанию алмазного порошка в пастах. Алмазные пасты выпускаются нормальной (Н), повышенной (П) и высокой (В) концентрации в зависимости от массовой доли порошка в пасте для каждой зернистости.
В таблице приведены данные о содержании алмазных порошков различных зернистостей в пастах:
Зернистость, мкм | Концентрация алмазного порошка% (масс.) | Н | П | В |
125/100 100/80 80/63 | 40 | 60 | ||
63/50 50/40 | ||||
40 | 20 |
60/40
40/28 8 20 40
28/20
20/14
14/10 15 30
10 / 7
7 / 5
5 / 3 10 20
пятница, 5 февраля 2010 г.
Влияние характеристик рабочего слоя алмазных кругов на их работоспособность.
Марка алмазов.
Синтетические алмазные порошки разных марок отличаются друг от друга прочностью, формой зерен, развитостью поверхности и способностью к самозатачиванию. Прочность алмазных шлифпорошков определяют по результатам определения разрушающей нагрузки для 50 одиночных зерен. Чем выше цифровое обозначение в марке порошка, тнм выше прочность алмазного шлифпорошка.
Многочисленными исследованиями установлено, что оптимальный маркой алмаза для большинства органических связок является марка АС4. Алмазные зерна этой марки имеют шероховатую, развитую поверхность, достаточную прочность и хрупкость, что обеспечивает их способность к самозатачиванию в инструменте на органических связках.
Алмазные порошки АС6, имеют большую прочность и меньшую хрупкость чем алмазы АС4. Поэтому алмазы марки АС6 используются преимущественно в металлических связках, предназначенных для обработки твердого сплава.
Высокая прочность марки АС6 при достаточно прочном закреплении зерен в металлической связке уменьшает их размерный износ и обеспечивает высокую работоспособность шлифовального инструмента.
Влияние зернистости алмазного порошка.
С увеличением зернистости алмазного порошка работоспособность алмазных кругов повышается, т.е. повышается коэффициент шлифования Кш, но при этом повышается шероховатость обрабатываемой поверхности.
Увеличение зернистости алмазного порошка позволяет повысить производительность процесса обработки. Поэтому для повышения производительности и повышения стойкости кругов следует применять наибольшую зернистость, которая обеспечивает требуемую шероховатость обрабатываемой поверхности.
Влияние концентрации алмаза.
С увеличением концентрации алмаза в круге с 25% до 150% стойкость кругов увеличивается (Кш повышается). Это объясняется увеличением количества зерен одновременно участвующих в работе и соответственно уменьшением нагрузки на каждое алмазное зерно. При концентрации алмаза свыше 100% рост Кш замедляется.
При шлифовании деталей и заточке инструмента из твердого сплава оптимальной является концентрация 100%.
Роль связки в рабочем слое алмазного круга.
Важнейшим элементом любого абразивного инструмента является связка, закрепляющая алмазные зерна в слое, позволяющая зернам воспринимать внешние нагрузки в процессе шлифования, отводящая теплоту из зоны резания и взаимодействующая с обрабатываемым материалом. Каждой марке алмазов, обрабатываемому материалу и условиям обработки должны соответствовать определенные свойства связки, при которых эксплутационные свойства алмаза проявляются наиболее полно. При недостаточной прочности зерен, они быстро изнашиваются и удаляются из связки практически целыми после образования площадки износа.
Связка, которая имеет низкую или очень высокую износостойкость также не обеспечивают эффективную работу алмазных зерен.
Влияние металлизации алмазных порошков на работоспособность шлифовальных кругов.
Одним из эффективных методов повышения износостойкости и производительности алмазного инструмента является применение металлизированных алмазных порошков. В настоящее время наиболее широкое распространение получило покрытие алмазных порошков никелем .
Нанесение никелевого покрытия на алмазное зерно обеспечивает ряд преимуществ, обуславливающих повышение стойкости кругов и производительности процесса обработки, а именно:
- Увеличение прочности алмазного зерна с покрытием Ni ;
- Повышение термостойкости алмазного слоя круга;
- Лучшее удержание алмазных зерен в связке.
Увеличение прочности алмазных зерен покрытых металлом обусловлено тем, что металл заполняет микротрещины алмазного зерна и заключает их в металлическую оболочку.
Лучшему удержанию металлизированных алмазных зерен в связке способствует, во-первых, увеличение поверхности зерна и его шероховатости, во-вторых, силы сцепления между металлом покрытия и смолой выше, чем между алмазом и просто смолой.
Механизм физико-химического взаимодействия между фенолформальдегидной смолой (связующим) и металлом заключается в абсорбции гидроксильных групп на поверхности и их взаимодействия с атомами металла, его оксидами и гидроксидами. Это приводит к увеличению подвижности полимерных цепей и тем самым повышению энергии взаимодействия на границе связка-металл. Таким образом, увеличение поверхности контакта связка металлизированное зерно и повышение энергии взаимодействия на границе контакта, обеспечивает лучшее удержание зерен в связке.
Повышение термостойкости алмазоносного слоя с металлизированными зернами обусловлено тем, что слой покрытия, отводя часть тепла от кристалла алмаза, уменьшает температуру на границе покрытия-связки, что благоприятно сказывается на стойкости инструмента.
Эксперименты по шлифованию различных видов сплавов алмазными кругами на органических связках показали, что при использовании в кругах металлизированного алмазного порошка достигается снижение удельного расхода алмаза при увеличении производительности обработки в 1,4 - 1,7 раза. Особенно эффективным является применение металлизированных алмазов в органических связках при работе кругов на повышенных режимах.
Заказать круги с металлизированным никелем алмазоносным слоем на органических связках можно позвонив по тел / факс +38044-524-25-32
Синтетические алмазные порошки разных марок отличаются друг от друга прочностью, формой зерен, развитостью поверхности и способностью к самозатачиванию. Прочность алмазных шлифпорошков определяют по результатам определения разрушающей нагрузки для 50 одиночных зерен. Чем выше цифровое обозначение в марке порошка, тнм выше прочность алмазного шлифпорошка.
Многочисленными исследованиями установлено, что оптимальный маркой алмаза для большинства органических связок является марка АС4. Алмазные зерна этой марки имеют шероховатую, развитую поверхность, достаточную прочность и хрупкость, что обеспечивает их способность к самозатачиванию в инструменте на органических связках.
Алмазные порошки АС6, имеют большую прочность и меньшую хрупкость чем алмазы АС4. Поэтому алмазы марки АС6 используются преимущественно в металлических связках, предназначенных для обработки твердого сплава.
Высокая прочность марки АС6 при достаточно прочном закреплении зерен в металлической связке уменьшает их размерный износ и обеспечивает высокую работоспособность шлифовального инструмента.
Влияние зернистости алмазного порошка.
С увеличением зернистости алмазного порошка работоспособность алмазных кругов повышается, т.е. повышается коэффициент шлифования Кш, но при этом повышается шероховатость обрабатываемой поверхности.
Увеличение зернистости алмазного порошка позволяет повысить производительность процесса обработки. Поэтому для повышения производительности и повышения стойкости кругов следует применять наибольшую зернистость, которая обеспечивает требуемую шероховатость обрабатываемой поверхности.
Влияние концентрации алмаза.
С увеличением концентрации алмаза в круге с 25% до 150% стойкость кругов увеличивается (Кш повышается). Это объясняется увеличением количества зерен одновременно участвующих в работе и соответственно уменьшением нагрузки на каждое алмазное зерно. При концентрации алмаза свыше 100% рост Кш замедляется.
При шлифовании деталей и заточке инструмента из твердого сплава оптимальной является концентрация 100%.
Роль связки в рабочем слое алмазного круга.
Важнейшим элементом любого абразивного инструмента является связка, закрепляющая алмазные зерна в слое, позволяющая зернам воспринимать внешние нагрузки в процессе шлифования, отводящая теплоту из зоны резания и взаимодействующая с обрабатываемым материалом. Каждой марке алмазов, обрабатываемому материалу и условиям обработки должны соответствовать определенные свойства связки, при которых эксплутационные свойства алмаза проявляются наиболее полно. При недостаточной прочности зерен, они быстро изнашиваются и удаляются из связки практически целыми после образования площадки износа.
Связка, которая имеет низкую или очень высокую износостойкость также не обеспечивают эффективную работу алмазных зерен.
Влияние металлизации алмазных порошков на работоспособность шлифовальных кругов.
Одним из эффективных методов повышения износостойкости и производительности алмазного инструмента является применение металлизированных алмазных порошков. В настоящее время наиболее широкое распространение получило покрытие алмазных порошков никелем .
Нанесение никелевого покрытия на алмазное зерно обеспечивает ряд преимуществ, обуславливающих повышение стойкости кругов и производительности процесса обработки, а именно:
- Увеличение прочности алмазного зерна с покрытием Ni ;
- Повышение термостойкости алмазного слоя круга;
- Лучшее удержание алмазных зерен в связке.
Увеличение прочности алмазных зерен покрытых металлом обусловлено тем, что металл заполняет микротрещины алмазного зерна и заключает их в металлическую оболочку.
Лучшему удержанию металлизированных алмазных зерен в связке способствует, во-первых, увеличение поверхности зерна и его шероховатости, во-вторых, силы сцепления между металлом покрытия и смолой выше, чем между алмазом и просто смолой.
Механизм физико-химического взаимодействия между фенолформальдегидной смолой (связующим) и металлом заключается в абсорбции гидроксильных групп на поверхности и их взаимодействия с атомами металла, его оксидами и гидроксидами. Это приводит к увеличению подвижности полимерных цепей и тем самым повышению энергии взаимодействия на границе связка-металл. Таким образом, увеличение поверхности контакта связка металлизированное зерно и повышение энергии взаимодействия на границе контакта, обеспечивает лучшее удержание зерен в связке.
Повышение термостойкости алмазоносного слоя с металлизированными зернами обусловлено тем, что слой покрытия, отводя часть тепла от кристалла алмаза, уменьшает температуру на границе покрытия-связки, что благоприятно сказывается на стойкости инструмента.
Эксперименты по шлифованию различных видов сплавов алмазными кругами на органических связках показали, что при использовании в кругах металлизированного алмазного порошка достигается снижение удельного расхода алмаза при увеличении производительности обработки в 1,4 - 1,7 раза. Особенно эффективным является применение металлизированных алмазов в органических связках при работе кругов на повышенных режимах.
Заказать круги с металлизированным никелем алмазоносным слоем на органических связках можно позвонив по тел / факс +38044-524-25-32
Факторы, влияющие на выбор характеристик инструмента
1. Обрабатываемый материал.
2. Вид обработки – заточка инструмента, шлифование плоское, круглое наружное, круглое внутреннее, бесцентровое, другое.
3. Требуемая чистота обрабатываемой поверхности.
4. Припуск на обработку.
5. Обработка с охлаждающей жидкостью (СОЖ) или без охлаждения.
6. Режимы обработки.
2. Вид обработки – заточка инструмента, шлифование плоское, круглое наружное, круглое внутреннее, бесцентровое, другое.
3. Требуемая чистота обрабатываемой поверхности.
4. Припуск на обработку.
5. Обработка с охлаждающей жидкостью (СОЖ) или без охлаждения.
6. Режимы обработки.
Подписаться на:
Сообщения (Atom)